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The Double/Multiple Descent Phenomenon

Adlam, Ben, and Jeffrey Pennington. "The neural tangent kernel in high dimensions: Triple descent and a multi-scale theory 
of generalization." In International Conference on Machine Learning, 2020.
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where each  is an individual prediction model.fi(x)

‣ A class of semi-parametric models

‣ Ensemble methods

‣ Certain neural network models such as ResNet

What can we say about the risk curves of multi-component prediction models?
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We aim to demonstrate that:

In the following, I will 

first give some simple discussions and provide an intuitive explanation,

then give some technical details for  : how triple descent can be 
theoretically proved.

K = 2
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Data distribution

Theoretical Demonstration of Triple Descent in DRFMs

yi = β⊤xi + ϵi, i = 1,…, n, xi ∼ Unif( d ⋅ 𝕊d−1)

ϵi ∼ N(0,σ2){
Double random feature model

ℱDRF(Θ) = f(x; a, Θ) ≡
N1

∑
i=1

aiσ1 (⟨θi, x⟩/ d) +
N1+N2

∑
i=N1+1

aiσ2 (⟨θi, x⟩/ d) : ai ∈ ℝ, i ∈ [N]

: fixed at randomly generated valuesΘ

: trainable parametersa



Ridge(less) Regression & Limit of Excess Risk
Consider learning the coefficient vector  via the following loss function:a

â = arg min
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2},

       where  is the regularization parameter. Moreover, define the excess riskλ > 0

Rd(X, Θ, λ, β, ε) = 𝔼x∼Unif( d⋅𝕊d−1)[β⊤x − f(xi; â, Θ)]2 .
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       where  is the regularization parameter. Moreover, define the excess riskλ > 0
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Our goal: calculate

lim
N1/d = ψ1, N2/d = ψ2, n/d = ψ3,

N1, N2, d, n → ∞

Rd(X, Θ, λ, β, ε)

and investigate how this limit changes with the ratios  when  is small.ψ1, ψ2, ψ3 λ
We collect  into the vector .ψ1, ψ2, ψ3 ψ = [ψ1, ψ2, ψ3]



Assumption 1: Let  be weakly differentiable, with a weak 
derivative . Assume  for some constants .

σj : ℝ → ℝ ( j = 1,2)
σ′ j |σj(u) | ∨ |σ′ j(u) | ≤ C0eC1|u| C0, C1 < + ∞

Main Assumptions

• For , we define

               ,     ,    .


The sphere moments are collected into the vector .

G ∼ N(0,1)
μj,0 = 𝔼{σj(G)} μj,1 = 𝔼{Gσj(G)} μ2

j,* = 𝔼{σ2
j (G)} − μ2

j,1 − μ2
j,0

μ

‣ Define spherical moments of .σj
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It can be proved that analytic 
’s exist and are unique.νj



Main Theory for Asymptotic Excess Risk

 and  are given as follows:MD ∈ ℝ L ∈ ℝ4×4

(2) Denote , . Let ν*j = νj( λi) j = 1,2,3 MN = ν*1 μ2
1,1 + ν*2 μ2

2,1 , MD = ν*3 MN − 1.

H =

−
ν*2

3 μ4
1,1

M2
D

+ ψ1

ν*2
1

−
ν*2

3 μ2
1,1μ2

2,1

M2
D

−
μ2

1,1

M2
D

− μ2
1,*

* −
ν*2

3 μ4
2,1

M2
D

+ ψ2

ν*2
2

−
μ2

2,1

M2
D

− μ2
2,*

* * −
M2

N

M2
D

+
ψ3

ν*2
3

, V =

μ2
1,* 0

μ2
1,1

M2
D

ν*2
3 μ2

1,1

M2
D

μ2
2,* 0

μ2
2,1

M2
D

ν*2
3 μ2

2,1

M2
D

0 1
M2

N

M2
D

1
M2

D

,

(  is symmetric here). Define .H L = V⊤H−1V

Theorem. Under Assumptions 1 and 2, it holds that

where
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Simulations
The scale difference of activation functions: 



Simulations
Impact of the ratio :N1/N2

Peaks Location: N1/n = 1 (N1 + N2)/n = 3, 9/4, 11/6, 3/2.



quadruple descent quintuple descent

Simulations
Multiple descent with K > 2
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