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Consider

_ 4T o x; ~ N(0, 1) or Unif(y/d - S*)
=p'xX.+e€,i=1,...,n,

e; ~ N(0,7°)

and its linear ridgeless regression estimator (minimum £ »-norm estimator) is then
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Suppose that the sample size is fixed as a large constant (e.g., n = 200). How will the excess risk

R(p) =

Xtest

0T T 2
(ﬁ Xtest ﬁ Xtest)

change as d grows fromd < ntod = nthentod > n? (||f|, is fixed.)
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The Double/Multiple Descent Phenomenon
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Double/Multiple Descent w.r.t. Sample Size
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What if we consider more complicated models?

Multi-component prediction models:
JX) = /i(X) + fo(X) + -+ + fg(X),

where each f,(X) is an individual prediction model.

> A class of semi-parametric models
» Ensemble methods

» Certain neural network models such as ResNet

What can we say about the risk curves of multi-component prediction models?
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Consider again the simple learning the problem

x. ~ Unif(\/d - S

v=p'xX. +e€,i=1,..,n, {
e; ~ N(0,6°)

We aim to demonstrate that:

Forany K € N, there exists a K-component prediction

model whose risk curve exhibits (K + 1)-fold descent.

L

In the following, | will

first give some simple discussions and provide an intuitive explanation,

then give some technical details for K = 2 : how triple descent can be
theoretically proved.
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Forany K € N_, there exists a K-component prediction

model whose risk curve exhibits (K + 1)-fold descent.

.

Constructed prediction model: “multiple random feature model”

Multiple random feature model:

K
Fyvrp(®) = {f(x; a,0)= Z Z aiaj((ﬂi, X)/\/c_l) ca. € R,i € [N]}
j=1ies;

®: fixed at randomly generated values

a: trainable parameters
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Scale difference may be the key (consider the case N; = N,):
» If 0,(), 0,() are the same, we may expect double descent according to existing studies [Mei & Montanari,
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> If 6,() is very small compared with ¢(), we may also expect double descent according to existing studies [Mel
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The above are two extreme cases, each showing double descent with different peak locations. Therefore for more
appropriate scalings of o;(), 0,(), we can expect triple descent with two peaks.
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Theoretical Demonstration of Triple Descent in DRFMs

Data distribution
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Ridge(less) Regression & Limit of Excess Risk

Consider learning the coefficient vector a via the following loss function:

I ¢ > d
a = arg min {— §,<yi_f(xi; a, ®)> +—/1H3H%},
n n

? i=1
where 4 > 0 is the regularization parameter. Moreover, define the excess risk

Rd(Xa ®9 /19 ﬁa 8) — _XNUnif(\/;Z,gd—l)[ﬁTX _f(Xi; ﬁa ®)]2 .




Ridge(less) Regression & Limit of Excess Risk

Consider learning the coefficient vector a via the following loss function:

1 ¢ 2 d
a = arg min { — . — X-;ﬂ,@) +—1l|al|? },
¢ {nZ(y, fixi:2.0)) +=il uz}

? i=1
where 4 > 0 is the regularization parameter. Moreover, define the excess risk

Rd(Xa ®9 /19 ﬁa 8) — _XNUnif(\/;Z,gd—l)[ﬂTX _f(Xi; ﬁa ®)]2 .

Our goal: calculate

lim R X,("),/I, , €
Nl/d: ll/l’N2/d: W, nld = W, d( ﬁ )

Nl’NQ,’ d,n — OO

and investigate how this limit changes with the ratios vy, ¥, Yz when 4 is small.

We collect vy, y,, Y into the vector v = [y, ysr, Y.



Main Assumptions

Assumption 1: Let o; : R — | (7 = 1,2) be weakly differentiable, with a weak

derivative o;. Assume |aj(u)\ Vv |0]f(u)\ < Coecl‘”‘ for some constants C,, C; < + oo.

» Define spherical moments of o;.

« For G ~ N(0,1), we define
wo=E{c(G)}, p,=E{Go(G)}, ul=E{c7(G)}—pu’ —u

The sphere moments are collected into the vector u.




Main Theory for Asymptotic Excess Risk
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Main Theory for Asymptotic Excess Risk

Theorem. Under Assumptions 1 and 2, it holds that
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Theoretical Demonstration of Triple Descent

Proposition. Under Assumptions 1 and 2, it holds that
1. When (Y1 +2) /103 =c1 < 1, )1\1_%72 < 4005

2. When (V1 + ¢2) /93 =1, )I\IH%)R = +0Q;
%

3. Whenl < (Y1 +v2)/tp3 =ca <14+o/1p1, lim lim R < +o0;
p2.1,p2,«—0 A0

4. When (1 +2)/v3 =1+ o /11, lim lim R = +o0.
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5. Forany 0 <r<oo, lim R <400
¢17¢2_>OO
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Proposition. Under Assumptions 1 and 2, it holds that
1. When (Y1 +2)/1p3 =c1 < 1, )l\_%R < 400;
2. When (VY1 + ¥2) /13 =1, )1\13%)72 = 4-00;

3. When 1 < (11 +2) /13 = ca < 1+ 2 /91, lim lim R < 4o0;

p2,1,p42,«—0 A0

4. When (1 4+ 2)/1h3 =14+ 19/1p;,  lim  lim R = +oo.
/,1,2,1,/1,2,*—)0 A—0

5. Forany0 <r<oo, lim R<+o
¢17¢2_>Oo

Y1 /Pa=r

Asymptotic Risk

Model Complexity Parameter ¢



Simulations

The scale difference of activation functions:
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Simulations

Impact of the ratio N;/N:
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Simulations

Multiple descent with K > 2
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