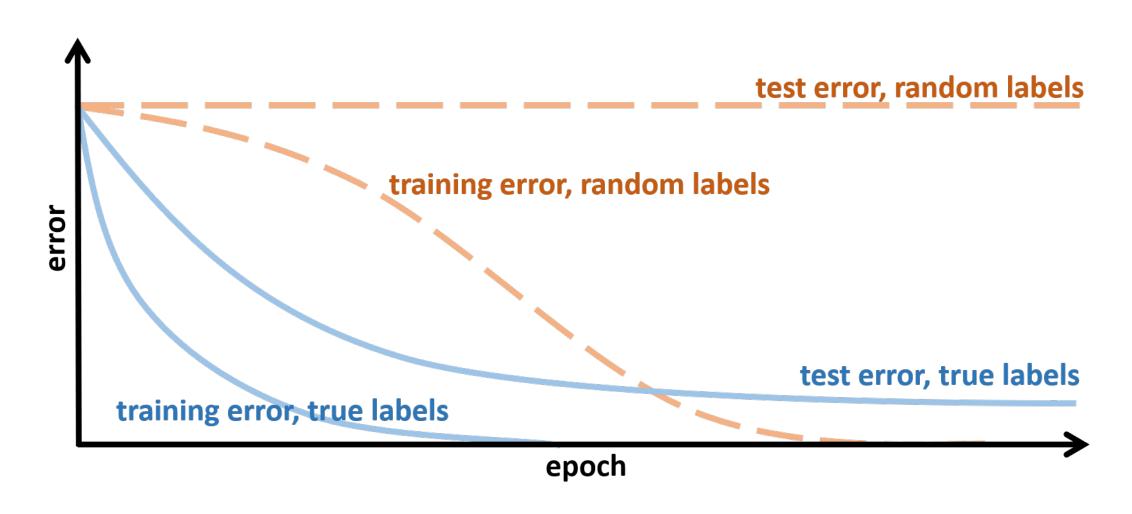


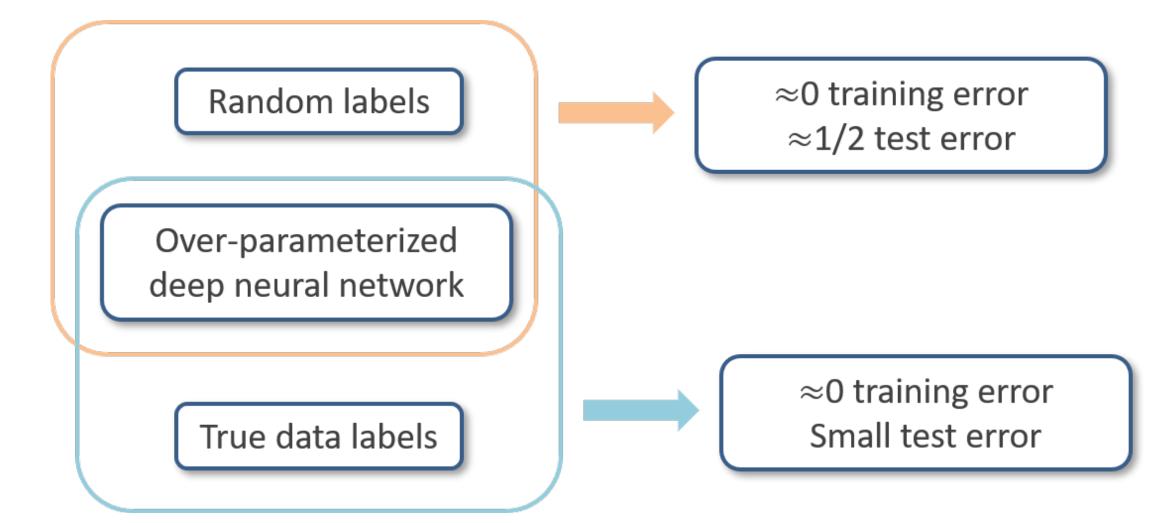
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks

Yuan Cao and Quanquan Gu Department of Computer Science, University of California, Los Angeles

- **Over-parameterization in Deep Learning**
- ► An empirical observation (Zhang etal. 2017; Bartlett et al. 2017; Neyshabur et al. 2018; Arora et al. 2019)



Questions We Aim to Answer



Why can extremely wide neural networks generalize?

What data can be learned by deep and wide neural networks?

Learning Over-parameterized DNNs

Fully connected neural network with width m:

$$f_{\mathbf{W}}(\mathbf{x}) = \sqrt{m} \cdot \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \cdots \sigma(\mathbf{W}_1 \mathbf{x}) \cdots)),$$

•
$$\sigma(\cdot)$$
 is the ReLU activation function: $\sigma(t) = \max(0, t)$.

- Suppose that $(\mathbf{x}, y) \sim \mathcal{D}$, and for simplicity, $\|\mathbf{x}\|_2 = 1$.
- ► $L_{(\mathbf{x}_i, y_i)}(\mathbf{W}) = \ell[y_i \cdot f_{\mathbf{W}}(\mathbf{x}_i)], \ \ell(z) = \log(1 + \exp(-z)).$

Algorithm SGD for DNNs starting at Gaussian initialization

- $\mathbf{W}_{l}^{(0)} \sim N(0, 2/m), \ l \in [L-1], \ \mathbf{W}_{L}^{(0)} \sim N(0, 1/m)$
- for i = 1, 2, ..., n do

Draw
$$(\mathbf{x}_i, y_i)$$
 from \mathcal{D} .

Update
$$\mathbf{W}^{(i)} = \mathbf{W}^{(i-1)} - \eta \cdot \nabla_{\mathbf{W}} L_{(\mathbf{x}_i, y_i)}(\mathbf{W}^{(i-1)}).$$

end for

Output: Randomly choose $\hat{\mathbf{W}}$ uniformly from $\{\mathbf{W}^{(0)}, \ldots, \mathbf{W}^{(n-1)}\}$.

Generalization Bound, NTRF

For any R > 0, if $m \ge \widetilde{\Omega}(\operatorname{poly}(R, L, n))$, then with high probability, SGD returns $\mathbf{\hat{W}}$ that satisfies

$$\mathbb{E}\left[L_{\mathcal{D}}^{0-1}(\widehat{\mathbf{W}})\right] \leq \inf_{f \in \mathcal{F}(R)} \left\{\frac{4}{n} \sum_{i=1}^{n} \ell[y_i \cdot f(\mathbf{x}_i)]\right\} + \widetilde{\mathcal{O}}\left(\frac{L}{\sqrt{n}}\right)$$

where $\mathcal{F}(\mathbf{W}^{(0)}, R)$ is the Neural Tangent Random Feature (NTRF) function class:

$$\mathcal{F}(R) = \left\{ f_{\mathbf{W}^{(0)}}(\cdot) + \langle \nabla f_{\mathbf{W}^{(0)}}(\cdot), \mathbf{W} \rangle : \|\mathbf{W}_l\|_F \le Rm^{-1} \right\}$$

Test error of DNNs \leq Training loss of NTRF + $\widetilde{\mathcal{O}}(n^{-1/2})$.

Generalization Bound. NTK

Let $\lambda_0 = \lambda_{\min}(\Theta^{(L)})$. If $m \ge \widetilde{\Omega}(\operatorname{poly}(L, n, \lambda_0^{-1}))$, then with high probability, SGD returns $\widehat{\mathbf{W}}$ that satisfies

$$\mathbb{E}\left[L_{\mathcal{D}}^{0-1}(\widehat{\mathbf{W}})\right] \leq \widetilde{O}\left[L \cdot \inf_{\widetilde{y}_{i}y_{i} \geq 1} \sqrt{\frac{\widetilde{\mathbf{y}}^{\top}(\mathbf{\Theta}^{(L)})^{-1}\widetilde{\mathbf{y}}}{n}}\right].$$

where $\Theta^{(L)}$ is the neural tangent kernel (Jacot et al. 2018) Gram matrix:

$$\Theta_{i,j}^{(L)} := \lim_{m \to \infty} m^{-1} \langle \nabla_{\mathbf{W}} f_{\mathbf{W}^{(0)}}(\mathbf{x}_i), \nabla_{\mathbf{W}} f_{\mathbf{W}^{(0)}}(\mathbf{x}_j) \rangle.$$

The "classifiability" of the underlying data distribution \mathcal{D} can also be measured by the quantity $\inf_{\widetilde{y}_i y_i > 1} \sqrt{\widetilde{\mathbf{y}}^{\top}} (\mathbf{\Theta}^{(L)})^{-1} \widetilde{\mathbf{y}}$.

Discussion

Connection between the two bounds

- \triangleright DNN competes with the best function in $\mathcal{F}(\mathcal{O}(1))$.
- $\triangleright R = \inf_{\widetilde{y}_i y_i > 1} \sqrt{\widetilde{\mathbf{y}}^{\top} (\mathbf{\Theta}^{(L)})^{-1} \widetilde{\mathbf{y}}}$ guarantees small training loss of the NTRF function class.

Extremely wide neural networks can generalize

- \triangleright The generalization bounds do not increase with m.
- \blacktriangleright Quantification of the "classifiability" of \mathcal{D}
 - ▷ For random labels, $\inf_{\widetilde{y}_i y_i \ge 1} \sqrt{\widetilde{\mathbf{y}}^{\top}(\mathbf{\Theta}^{(L)})^{-1}\widetilde{\mathbf{y}}} \gg \sqrt{n}$.
- \triangleright For "good" data, $\inf_{\widetilde{y}_i y_i > 1} \sqrt{\widetilde{\mathbf{y}}^{\top}} (\mathbf{\Theta}^{(L)})^{-1} \widetilde{\mathbf{y}} = \mathcal{O}(1).$
- "Neural tangent kernel regime"
- $\triangleright \sqrt{\widetilde{\mathbf{y}}^{\top}(\mathbf{\Theta}^{(L)})^{-1}\widetilde{\mathbf{y}}}$ is the NTK-induced RKHS norm of the kernel regression classifier on $\{(\mathbf{x}_i, \widetilde{y}_i), i \in [n]\}$.

