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Over-parameterization in Deep Learning

I An empirical observation (Zhang etal. 2017; Bartlett et
al. 2017; Neyshabur et al. 2018; Arora et al. 2019)

Questions We Aim to Answer

Why can extremely wide neural networks generalize?

What data can be learned by deep and wide neural networks?

Learning Over-parameterized DNNs

I Fully connected neural network with width m:

fW(x) =
√
m ·WLσ(WL−1 · · ·σ(W1x) · · · )),

I σ(·) is the ReLU activation function: σ(t) = max(0, t).

I Suppose that (x, y) ∼ D, and for simplicity, ‖x‖2 = 1.

I L(xi,yi)(W) = `[yi · fW(xi)], `(z) = log(1 + exp(−z)).

Algorithm SGD for DNNs starting at Gaussian initialization

W
(0)
l ∼ N(0, 2/m), l ∈ [L− 1], W

(0)
L ∼ N(0, 1/m)

for i = 1, 2, . . . , n do
Draw (xi, yi) from D.
Update W(i) = W(i−1) − η · ∇WL(xi,yi)(W

(i−1)).
end for
Output: Randomly choose Ŵ uniformly from {W(0), . . . ,W(n−1)}.

Generalization Bound, NTRF

For any R > 0, if m ≥ Ω̃
(
poly(R,L, n)

)
, then with high proba-

bility, SGD returns Ŵ that satisfies

E
[
L0−1
D (Ŵ)

]
≤ inf

f∈F(R)

{
4

n

n∑
i=1

`[yi · f (xi)]

}
+ Õ

(
LR√
n

)
,

where F(W(0), R) is the Neural Tangent Random Feature (NTRF)
function class:

F(R) =
{
fW(0)(·) + 〈∇fW(0)(·),W〉 : ‖Wl‖F ≤ Rm−1/2

}
.

Test error of DNNs ≤ Training loss of NTRF + Õ(n−1/2).

Generalization Bound. NTK

Let λ0 = λmin(Θ(L)). If m ≥ Ω̃
(
poly(L, n, λ−1

0 )
)

, then with high

probability, SGD returns Ŵ that satisfies

E
[
L0−1
D (Ŵ)

]
≤ Õ

[
L · inf

ỹiyi≥1

√
ỹ>(Θ(L))−1ỹ

n

]
.

where Θ(L) is the neural tangent kernel (Jacot et al. 2018) Gram
matrix:

Θ
(L)
i,j := lim

m→∞
m−1〈∇WfW(0)(xi),∇WfW(0)(xj)〉.

The “classifiability” of the underlying data distribution D can
also be measured by the quantity inf ỹiyi≥1

√
ỹ>(Θ(L))−1ỹ.

Discussion

I Connection between the two bounds

. DNN competes with the best function in F(Õ(1)).

. R = inf ỹiyi≥1

√
ỹ>(Θ(L))−1ỹ guarantees small training loss

of the NTRF function class.

I Extremely wide neural networks can generalize

. The generalization bounds do not increase with m.

I Quantification of the “classifiability” of D
. For random labels, inf ỹiyi≥1

√
ỹ>(Θ(L))−1ỹ�

√
n.

. For “good” data, inf ỹiyi≥1

√
ỹ>(Θ(L))−1ỹ = Õ(1).

I “Neural tangent kernel regime”

.
√

ỹ>(Θ(L))−1ỹ is the NTK-induced RKHS norm of the
kernel regression classifier on {(xi, ỹi), i ∈ [n]}.

Discussion Cont’d

I B(W(0), ω) := {W : ‖Wl −W
(0)
l ‖F ≤ ω, l ∈ [L]}.

I For W ∈ B(W(0), ωp), ωp = Õ(1), neural networks enjoy
good properties.

I As long as xi 6= xj when yi 6= yj, SGD converges with

trajectory length ωopt ≤ Õ(poly(n) ·m−1/2).

I Under stronger data distribution assumptions, SGD converges
with trajectory length ωgen ≤ Õ(m−1/2)

Key Ingredients for the Proof

I Deep ReLU networks are almost linear in terms of their param-
eters in a small neighbourhood around random initialization

fW′(xi) ≈ fW(xi) + 〈∇fW(xi),W
′ −W〉.

I L(xi,yi)(W) is Lipschitz continuous and almost convex

‖∇Wl
L(xi,yi)(W)‖F ≤ O(

√
m), l ∈ [L],

L(xi,yi)(W
′) & L(xi,yi)(W) + 〈∇WL(xi,yi)(W),W′ −W〉.

Optimization for Lipschitz and (almost) convex functions
+

Online-to-batch conversion

Applicable to general loss functions:
`(·) is convex/Lipschitz/smooth

⇒ L(xi,yi)(W) is (almost) convex/Lipschitz/smooth
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