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Learning Over-parameterized DNNs

Empirical observation on extremely wide deep neural networks (Zhang et
al. 2017; Bartlett et al. 2017; Neyshabur et al. 2018; Arora et al. 2019)
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» Why can extremely wide neural networks generalize?
» What data can be learned by deep and wide neural networks?
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Learning Over-parameterized DNNs

» Fully connected neural network with width m:

fwx)=vm- -Wro(Wr_q1---0(Wix)--)).
» o(-) is the ReLU activation function: o(t) = max(0, t).
> L,y (W) = Lyi - fw(xi)], £(z) =log(1 + exp(—2)).
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Learning Over-parameterized DNNs

» Fully connected neural network with width m:

fwx)=vm -Wro(Wr_1--0(Wix)--+)).
» o(-) is the ReLU activation function: o(t) = max(0, t).
> L,y (W) = Lyi - fw(xi)], £(z) =log(1 + exp(—2)).

Algorithm SGD for DNNs starting at Gaussian initialization

W~ N(0,2/m), 1 € [L—1], W ~ N(0,1/m)
fori=1,2,...,ndo

Draw (x;,y;) from D.

Update W = W=D — . vy L
end for N
Output: Randomly choose W uniformly from {W(O), . ,W(”*l)}.

)(W(i—l))_

Xi)Yi
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Generalization Bounds for DNNs

Theorem
For any R > 0, if m > ﬁ(poly(R, L, n)) then with high probability, SGD returns W that satisfies

1 W , 4 LR [log(1/6)
E[LY 1 (W)] < fef(lvrslszm) {5 ;E[yi : f(m)]} +0 T + T]

where

FWO, R) = { fwor () + (Vwhwo (), W) : [Wil[p < R-m~"/2, 1 € [L]}.
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Generalization Bounds for DNNs

Theorem
For any R > 0, if m > ﬁ(poly(R, L, n)) then with high probability, SGD returns W that satisfies

E[Lop_l(W)] < inf {%iz[% ) f(Xi)]} L0 log(l/é)]’

LR n
~ JEF(W© R) — vn n

where

FWO, R) = { fwor () + (Vwhwo (), W) : [Wil[p < R-m~"/2, 1 € [L]}.

Neural Tangent Random Feature (NTRF) model
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Generalization Bounds for DNNs

Corollary
Lety = (y1,---,yn)" and Ao = Amin (@), Ifm > ﬁ(poly(L,n, Xo')), then with high probability,
SGD returns W' that satisfies

E[Ly (W )]<ol g /@D +0[ —log(l/é)]'

viyi>1

where ®(%) is the neural tangent kernel (Jacot et al. 2018) Gram matrix.
L : _
@E,j) = lim 00 m ™ (Vw fiyo (%), VW fiwo (X))
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Generalization Bounds for DNNs

Corollary
Lety = (y1,...,yn)" and Ao = Anin(OF)). If m > ﬁ(poly(L,n, /\51)), then with high probability,
SGD returns W that satisfies

E[LS (W) < 6|0 it /L © +o[ log(i/é)].

iYi

f
>1

where ®(%) is the neural tangent kernel (Jacot et al. 2018) Gram matrix.

91(5) = lim 00 m ™ (Vw fiyo (%), VW fiwo (X))

The “classifiability” of the underlying data distribution D can also be
measured by the quantity infg,,.~; /y ' (@1))~1y.
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Overview of the Proof

Key observations

» Deep RelLU networks are almost linear in terms of their parameters in a small neighbour-
hood around random initialization

fwr (xi) = fw(xi) + (Vfw(x), W — W),
» L(x, ) (W) is Lipschitz continuous and almost convex
IVW, Lix; ) (W)l < O(Vm), 1€ [L],
YW') 2 Lix, y) (W) + (Vw Lix, ) (W), W — W).

L (%4,Yi
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L (%45Yi

Optimization for Lipschitz and (almost) convex functions

+
Online-to-batch conversion

11/14



Overview of the Proof

Key observations

» Deep RelLU networks are almost linear in terms of their parameters in a small neighbour-
hood around random initialization

fw (%) = fw(xi) + (Vfw(xi), W — W).
» L(x, ) (W) is Lipschitz continuous and almost convex

VW, Lx; ) (W) F < O(vm), 1 € [L],
)(W’) 2 L(xhyi)(W) + <VwL(xi7yi)(W)’W’ _ W>

L (%45Yi

Applicable to general loss functions:
(-) is convex/Lipschitz/smooth

= L(x, ) (W) is (almost) convex/Lipschitz/smooth

XiyYi
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Summary

» Generalization bounds for wide DNNs that do not increase in network width.

» A random feature model (NTRF model) that naturally connects over-parameterized
DNNs with NTK.

> A quantification of the “classifiability” of data: infj,.>1 /¥y (©W®)-1y.

» A clean and simple proof framework for neural networks in the “NTK regime” that
is applicable to various problem settings.
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Thank you!
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